Аналитик, тестируя алгоритм прогнозирования спроса, может отследить влияние каждого отдельного фактора и обнаружить неочевидные закономерности среди «находок» искусственного интеллекта.
Приведем пример.
Компании нужно спрогнозировать спрос на самокаты. Для этого данные о покупателях разделяются на кластеры следующим образом:
- Возрастной кластер. Часто самокаты покупают для детей, но последние несколько лет их активно используют взрослые. Возраст может указывать на то, какой тип самоката будет более популярен среди покупателей.
- Географический фактор. Этот кластер будет основываться на местонахождении покупателей, чтобы выявить, какие районы или города пользуются наибольшим спросом на самокаты.
- Ценовая категория. Этот кластер будет основываться на стоимости купленного самоката. Так можно будет выяснить, какие типы самокатов наиболее популярны среди покупателей и в какой ценовой категории лучше всего работать.
- Сезонный фактор. С помощью оценки спроса в разные сезоны можно будет определить, когда пользователи наиболее активно покупают самокаты, и подготовиться к этому периоду.
- Стилевой кластер. Этот раздел будет показывать, какой стиль жизни ведут покупатели, чем интересуются, какие делают сопутствующие покупки. Анализируя эти данные, ИИ сможет определить, какие типы самокатов наиболее популярны у каких групп покупателей и как можно эффективнее продвигать.